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scatter. (2) Helium-filled tubes are often used to reduce 
absorption by air in the input or output beam direc- 
tions. However, as the main problem is generally one 
of peak-to-background ratio, these measures only 
slightly affect this ratio, and in any case do not reduce 
background intensity significantly. It would seem 
highly advantageous to fill the 'visible volume' with 
helium, so affecting the background intensity directly. 
This is obviously difficult to do as it implies either 
a helium-filled enclosure over the entire diffractome- 
ter, or a helium-filled chamber mounted around the ~0 
axis which surrounds the capillary and crystal com- 
pletely. There are obvious mechanical difficulties in 
building such a device. First, it must be almost X-ray 
transparent over the angular ranges used. Second, it 
must be moderately well sealed to minimize leakage of 
helium if it encloses the rp drive shaft bearing. A mylar 
cylinder with solid supports mounted onto the top of 
the goniometer head would seem to be a good com- 
promise allowing for rigid support of the top and bot- 
tom in the X-ray shadow. 

(3) Any means of restricting the visible volume will 
reduce the background in almost direct proportion 
to the volume change. This can be achieved by placing 
the final restricting aperture and the scatter cap on the 
input collimator as close to the crystal as possible. 
Similarly, there should be a defining aperture as close 
to the crystal as possible in the crystal-counter path- 
way, and a second one close to the counter. 

We thank Drs A. Kossiakoff and R. Swanson for 
generously supplying background data, Mr R. Almassy 

for helpful assistance, and Dr R. E. Marsh and Mr 
J. Greif for valuable discussions. We are grateful to 
Dr Sten Samson for allowing us to collect data on 
diffractometer F, a machine designed in the most part 
by himself, and for his supervision in the redesign of 
diffractometer B. We also recognize his constant at- 
tention in the redesign and improvements made to 
diffractometer C. 
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Highly Anisotropic Extinction 
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An investigation has been made of some large anisotropies observed in the X-ray scattering from a 
single crystal of Cr-C1 boracite, Cr3B70~3C1, in its room-temperature cubic phase. The model of Cop- 
pens & Hamilton [Acta Cryst. (1970), A26, 71-83] for anisotropic secondary extinction has been used 
to describe the results. Both the type I (domain misorientation) and the type II (domain shape) extinc- 
tion of that model were found to be present. A new expression for the orientation dependence of type I 
extinction is introduced, which is believed to be more appropriate to the normal experimental situation. 
With this modification, the model was able to reproduce fairly well the observed changes in integrated 
intensity on rotation about the scattering vector. The components of the tensors describing the two 
types of extinction indicated much greater angular misorientation about the growth axis of the crystal 
than perpendicular to it, and a domain semi-axis smaller along the growth axis than perpendicular to it. 

Introduction 

During the collection of X-ray diffraction data for the 
refinement of the crystal structure of Cr-C1 boracite, 

CraB7OlaC1, in its room-temperature cubic phase 
(Nelmes & Thornley, 1974), large differences between 
the integrated intensities of symmetry-related reflexions 
were observed. These differences were much too great 
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to have resulted from absorption, or path-length 
variation ofisotropic extinction. The effects were largest 
for low-angle strong reflexions. This suggested anisot- 
ropies in the extinction properties of the sample, 
rather than a crystal structure with less than cubic 
symmetry. This paper describes some further measure- 
ments made to investigate the form of the anisotropy 
and the success of a simple model for secondary ex- 
tinction in their interpretation. 

The theory of extinction in imperfect crystals in cur- 
rent use is that of Zachariasen (1967). This formulation 
has been extended to allow for angle dependence of 
the extinction by Cooper & Rouse (1970), and for 
direction dependence of secondary extinction by Cop- 
pens & Hamilton (1970). The model of Coppens & 
Hamilton (1970) makes detailed predictions of the 
dependence of the observed integrated intensity on the 
azimuthal angle of the crystal at the Bragg position. 
Measurements of the strongest reflexions from Cr-CI 
boracite have been made for a number of different 
azimuthal settings. Large differences in integrated 
intensity were found, the extinction factor y varying 
between 0.23 and 0.71 for the strongest reflexion. These 
results were used to test the predictions of the Coppens 
& Hamilton model. A small but important modifica- 
tion of this model was found to be necessary. 
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Fig. 1. Variation of integrated intensity with azimuthal angle 
for OhO reflexions. The intensities have been corrected for 

absorption and are on an arbitrary scale. The vector D 
indicates the direction which is vertical, i.e. perpendicular 
to the scattering plane. 

A more general treatment of the extinction problem 
has been made recently by Becker & Coppens (1974a, 
b). Use of this theory, rather than that of Zachariasen 
(1967) would not alter the qualitative conclusions. 
However, there would be major changes in the results 
for domain size and misorientation obtained from the 
deduced extinction parameters. 

The main intentions of this paper are: 
(a) To illustrate the large size of the effects which 

may be produced by anisotropic extinction. 
(b) To suggest an improved model of anisotropic 

secondary extinction. A new expression is given for the 
variation of domain misorientation with direction. 
This expression gives a much improved fit to the ex- 
perimental results, and is believed to correspond to the 
experimental situation more nearly than does that of 
Coppens & Hamilton (1970). 

(c) To describe some practical consequences which 
may be deduced from the form of the new model. 

E x p e r i m e n t a l  

Boracites have the general formula MaB7OlaX, where 
M is a divalent metal and X is C1, Br or I. For a review 
of structural and other work on boracites, see Nelmes 
(1974). Cr-C1 boracite is cubic at room temperature 
(Schmid, 1965). The crystal structure of the cubic 
phase was determined by Ito, Morimoto & Sadanaga 
(1951), and Cr-C1 boracite has been found to have the 
same structure (Nelmes & Thornley, 1974). The space 
group is F-43c, with eight formula units in a cell of side 
a =  12.132_+0.003 A. 

Crystals of boracites may be grown by vapour trans- 
port from a mixture of oxides and the appropriate 
metal halide in a sealed quartz tube, as described by 
Schmid (1965). Single crystals of boracites grown in 
this way frequently show sector growth structure 
(Schmid, 1969). Different but contiguous parts of the 
crystal have formed from separate growth centres, and 
grown along different crystallographic directions, 
generally of the types (100), (110) or (111). The 
growth sectors may differ in physical properties such as 
colour and birefringence. (Some boracites are birefrin- 
gent even in the cubic phase. This optical anisotropy 
generally decreases in the sequence I, Br, Cl: for a given 
halogen it is smallest in the (100) sector.) Our crystal 
of Cr-Cl boracite was kindly provided by Dr H. Schmid 
of the Battelle Institute, Geneva. It consisted of a 
single [100] growth sector, and was a needle of rectan- 
gular cross section, dimensions 0.08 x 0.10 mm, length 
1 mm. The needle axis was chosen to be [100]; the axes 
[010] and [001] were perpendicular to the side faces of 
the needle. For data collection, two samples each of 
length 0.15 mm were cut from the needle. One of these 
crystals was used for the present experiment. 

The crystal was mounted on a Hilger and Watts 
four-circle diffractometer, and the [010] direction set 
parallel to the (p axis. The azimuthal orientation g /of  
(0h0) planes may then be changed by changing ~0. 

A C 3 0 A  - 5 
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Measurements were made of the integrated intensities 
of a number of 0h0 reflexions at 10 ° intervals of (0. Un- 
filtered Mo Ka radiation was used. The results, cor- 
rected for absorption (Stewart, 1972), are shown in 
Fig. 1. The intensity variation is greatest for the strong- 
est reflexion (040). For this reflexion, the ratio of the 
largest to smallest extimate of the intensity is 2.6. This 
variation is much greater than could be produced by 
path-length variation of isotropic extinction.* Smaller 
effects were found for 080 and 0,12,0; for 060 no 
systematic change was detected. The observed intensity 
pattern repeated every 180 ° and showed a maximum 
when [100] (the needle axis) was vertical, a minimum 
when [001] was vertical. 

Further measurements of {h00} reflexions were made, 
remounting the crystal and setting [001] and then [100] 
parallel to the ~0 axis. The results for {400} reflexions 
are shown in Fig. 2. For 004, the results were similar 
to those for 040, the intensity being a maximum when 
the needle axis was vertical. For 400 there was only 
about 12 % change in intensity as ~, was varied. 

A small number of observations were made of {440} 
and {444} refiexions, with azimuthal settings for which 
a simple zone axis was vertical. The results were used 
to confirm the form of the extinction suggested by the 
{h00} reflexions. The integrated intensities of a number 
of weaker reflexions were also measured. These values 
were needed for the determination of a scale factor for 
the principal measurements. 

orientation of these domains is assumed to be a Gaus- 
sian: 

P(A)= ]/2g exp (-2ng2A z) (2) 

with variance 0 .2=  1/4rig 2. The state of imperfection of 
the crystal is summarized in the two parameters r and 
g. 

Zachariasen makes a number of physical and mathe- 
matical assumptions in his theory; these have been 
summarized by Coppens & Hamilton (1970). If 
primary extinction may be neglected, the final expres- 
sion for the secondary extinction correction y is 

where 

and 

y = ( 1  + g , ~ ) -  1/2 (3) 

g*=(2 ' / r  z + 1/gZ) - m  (4) 

# =  2p2 Q0, Pn = (1 +COS 2n 20) 
pl 2 

The incident radiation is assumed to be unpolarized: 
the factor Pz/Pl gives an approximate average over the 
polarization states of the scattered X-rays. T is the 
absorption-weighted mean path length through the 
crystal. Thus, in (3), # describes the strength of the 
reflexion, T the size and shape of the crystal, and g* 
its extinction properties. 

Interpre ta t ion  
(a) Model  

The objective is to obtain for each reflexion an ex- 
pression for the extinction factor y, the ratio of the 
observed integrated intensity to the kinematical ap- 
proximation to that intensity. This extinction factor 
will depend upon the strength of the reflexion, the 
shape of the crystal, and its extinction properties. The 
integrated intensity per unit volume of a non-absorbing 
crystal in the kinematical approximation is equal to 
Q = QoK, where K is a polarization factor, and 

Q0 = IF(hkl)l 2 );3L . (1) 
Vc 

In (1), F(hkl) is the structure factor in units of scat- 
tering length per unit cell, Vc is the volume of the unit 
cell and L is the Lorentz factor. For normal-beam 
equatorial geometry, L = l / s i n 2 0 .  The polarization 
factor K has average value K=pl=½(1  +cos  2 20) for 
unpolarized incident X-rays. 

The model of an imperfect crystal used by Zacharia- 
sen (1967) is an assembly of misoriented perfect 
spherical domains, with mean radius r. The probability 
distribution for the angular deviationA from the mean 

* The form of the variation is similar to that observed for a 
plate-shaped crystal rotated about a direction in the plane of 
the plate: see Arndt & Willis (1966), p. 249. 
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Fig. 2. Variation of integrated intensity with azimuthal angle 
~, for {400} reflexions. The intensities have been corrected 
for absorption and are on the same scale as Fig. 1. For each 
reflexion, the positions where a cube axis is vertical are indica- 
ted. 
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Zachariasen defines two extreme types of imperfect 
crystal. The half-width of the diffraction pattern from 
a single domain is proportional to 2/r. For a type I 
crystal, r/2>~g, hence g*___g. The intrinsic width of the 
reflexion, and therefore the amount of extinction, is 
dominated by the domain misorientation. For a type II 
crystal, r /2~g,  hence g*~_r/2. The intrinsic width of 
the reflexion, and again therefore the extinction, is 
dominated by the diffraction width for reflexion from 
a single domain. Real crystals may lie between these 
two extremes. 

The treatment of Coppens & Hamilton (1970) allows 
the quantities r and g in (4) to vary with crystal orienta- 
tion. The domain shape is now assumed to be ellipsoi- 
dal, described by a second-rank tensor W. If the eigen- 
values of W are o9i, i = 1,2, 3, and the half lengths of the 
corresponding principal axes of the domains are r~, 
then r~= 1/1/o91. The quantity r in (4) becomes 

r (N)=(N 'WN)  -~/2 . (5) 

The unit vector N is in the plane of diffraction, and 
perpendicular to the incident beam. 

To allow the probability distribution for angular mis- 
orientation of these domains to vary with crystal set- 
ting, a second-rank tensor Z is introduced, and the 
function (2) becomes 

P(A,D)= ]/2g(.D) exp - [2n(D'ZO)A 2] (6) 

where the single parameter g is replaced by 

g(D)=(D'ZD) ~/z . (7) 

The unit vector D is perpendicular to the diffraction 
plane: in the present experiment it is therefore 
vertical. If the eigenvalues of Z are ~'~, i=  1,2, 3, then 
the corresponding principal variances of the angular 
distribution function are a~ = 1/4n~. 

Thus the expression describing anisotropic extinc- 
tion which corresponds to (4) is 

g* = [22N'WN + 
1 ] 1/2 

~ j  . (8) 
L 

To describe the extinction properties of a crystal, it is 
necessary therefore to determine the components of the 
symmetric tensors W and Z, referred to some set of 
axes in the crystal. (Since these tensors reflect, in some 
way, the growth and subsequent history of the sample, 
their symmetries have no required relationship to the 
point symmetry of the crystal. They may be either 
higher or lower symmetries: for example, higher for a 
non-cubic crystal with isotropic extinction, lower for a 
cubic crystal with anisotropic extinction, as here.) In 
any experimental situation the vectors N and D are 
known relative to the same set of axes; hence the ex- 
pected value of g* may be calculated. As for isotropic 
extinction, there are two extreme situations, type I in 
which g*_g(D) ,  and type II in which g*~_r(N)/2. The 
terms type I and type II will be used to describe these 
different kinds of anisotropic extinction, present in the 
same crystal. 

(b) Fitting to results 
The experimental results showed how the integrated 

intensities of sets of symmetry-related reflexions varied 
with azimuthal angle ~', i.e. with rotation about the 
scattering vector. Type I extinction depends upon the 
direction of D, which is perpendicular to the scattering 
vector. Type II extinction depends upon the direction 
of N; for small Bragg angles, this is approximately 
parallel to the scattering vector. 

For analysis of these data, it is convenient to define 

V = 22W (9) 

since only one wavelength was used, and also 

1 1 
U -  g.2 - N ' V N +  D'ZD" (10) 

Since Cr-CI boracite has cubic symmetry at room tem- 
perature, the quantities in (10) may conveniently be 
referred to the crystal axes x~, i = 1,2, 3. Let ng and d~ be 
the components of the vectors N and D respectively. 
Then, for a given reflexion and azimuthal orientation 
~u, the form of U may be written down by inspection. 
Consider for example 0k0 reflexions, where 

U = V22 -Jl- ( d l 2 Z l l  -Ji- 2dld3Z13 + d32Z33) - 1 

= V22+(Zu cos 2 ~,+Z13 sin 2~+Z33 sin2~u) -1 (11) 

with ~ chosen as 0 when D is parallel to [100]. In (11) 
it is assumed that N is parallel to the scattering vector. 
This is quite a good approximation for the strongest 
reflexions observed. With Mo Kc¢ radiation, the Bragg 
angles are 0=6.7  ° for (400}, 9.5 ° for (440} and 11.7 ° 
for (444}. 

Thus each reflexion in Fig. 2 shows principally the 
effect of variation of type I extinction, described by Z, 
with, in this approximation, no change in type II, 
described by V. The intensity values for (400} reflexions 
for each position where D is parallel to a cube axis are 
shown in Table 1. The effective components of Z and 
V for each measurement are also given, in the same 
approximation as above -  that N is parallel to the scat- 
tering vector. It is not possible to make a continuous 
variation in type II extinction alone. However, com- 
parison of different (400} reflexions at positions with 
the same D indicates difference in type II. It isevident 
that there is considerable anisotropy in type I (results 
for 040 and 004) and in type II (400 and 004 with D 
parallel to [010]). A model incorporating both types 
will therefore be necessary. 

Type I 
The results shown in Fig. 1 have maxima when D 

is parallel to [+ 1,0,0], and minima when D is paral- 
lel to [0,0, + 1]. They are approximately symmetric 
about these positions. This indicates that the cross 
term Z13 in (11) must be close to zero. From the large 
change in intensity for 040, Z33>>ZI~ (larger Z cor- 
responding to more extinction). The results for 004 in 
Fig. 2 similarly show Z12~_0 and Z22>>ZH. The inten- 
sity changes for 400 are rather irregular, but suggest 

A C 30A - 5* 
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similar values for Z22 and Z33, and hence Z23 ~ 0. The 
principal axes may therefore be chosen to coincide 
with the crystal axes. 

Type II 
It is necessary to compare the observed intensities 

of {400} reflexions for the same D and different N. The 
results in Fig. 2 and Table 1 suggest V22-Va3'~ Vn 
(smaller V corresponding to more extinction). Some 
further measurements were made to establish whether 
the other elements of V are zero, as for Z. The reflexions 
chosen were {440} and {444}, which are strong and 
may give simple forms for the quantity U of equation 
(10). Some of the measured integrated intensities, cor- 
rected for absorption, are given for {440} in Table 2. 

The explicit forms of N'VN and D'ZD are also 
listed. It is assumed that Z is diagonal, and that as 
before N is parallel to the scattering vector. Compari- 
son of pairs ofreflexions, for which the form of U differs 
only in the signs of the off-diagonal elements of V, 
suggest that these elements are small. Some of these 
differences may have resulted from variations in the 
mean path length. In the remainder of the analysis, it 
will be assumed that both Z and V are diagonal when 
referred to the crystal axes. 

(c) Extinction parameters 
To determine the components of the tensors V and 

Z, it is necessary to estimate the values of g* from the 
observed intensities, using equation (3) for the extinc- 
tion factor y. The information which is needed is: 

(i) the scale factor, 
(ii) the expected kinematical intensity per unit 

volume, Q, for each reflexion: this is required both to 
obtain a value of y from each observed intensity, and 
to calculate the factor ~ occurring in (3), and 

(ii) the absorption-weighted mean path length ~ for 
each measurement, also occurring in (3). 

For (i) and (ii), use was made of the results of the 
refinement of the cubic crystal structure of Cr-C1 
boracite (Nelmes & Thornley, 1974). The samples used 
in the data collection and for the present experiment 
were cut from the same needle-shaped single [100] 
growth sector, and were of similar dimensions. In the 
structural study, an orientation for the sample was 
chosen which minimized the anisotropy of the extinc- 
tion; an isotropic extinction factor in the least-squares 
refinement worked well. The conventional R index 
obtained was 2.5 %. The calculated structure factors 
in the final refinement have been used to estimate the 
values of Q which are needed for the present experi- 
ment. A scale factor was estimated from a comparison 
of the intensities of some weaker reflexions in the two 
experiments, reflexions for which extinction effects 
would be small. 

The path lengths T may be obtained from the values 
of the absorption factor A* calculated for each meas- 
urement. The expression used was T =  (In A*)/lu, where 
/z=41-3 cm -~ is the absorption coefficient of Cr-CI 
boracite for Mo Kc~ radiation. 

The experimental values of the extinction factor y 
obtained are given for {400} in Table 1 and for {440} 

Table 1. Principal measurements of  {400} reflexions 

h k l N'VN 

4 0 0  Vii 

0 4 0  1122 

0 0 4  V33 

Integrated 
intensity Extinction 

D D'ZD (arbitrary scale) factor y 

f [010] Z22 2046 (25) 0-584 (7) 
1, [001] Za3 1919 (24) 0"547 (7) 

[100] zH 2416 (28) 0.689 (8) 
[001] Z33 987 (17) 0-282 (5) 

[100] Z11 2472 (32) 0-706 (9) 
[010] Z22 825 (20) 0"235 (6) 

U 
(10 -s) 

1.51 (8) 
1.45 (10) 

4-4 (4) 
0.098 (7) 

7"9 (8) 
0.044 (5) 

h k l 
4 0 4  

4 0 ~ 

4 4 0  

~I 4 0 

0 4 4  

0 4 2I 

Table 2. Principal measurements of  {440} reflexions 

Integrated 
intensity 

N'VN D D'ZD (arbitrary scale) 

½(Vl1"[- 2V13"~- V33) [010] Z22 950 (9) 

½(V~- 2V~3+ 1"33) [0101 Z22 905 (9) 

1168 (10) 
920 (9) 

1137 (10) 
880 (9) 

651 (9) 
1200 (10) 

639 (9) 
1114 (10) 

½(Vll+2V12+ V22) { [001][1"10] ½(Zll -Jl- 222) 
Z33 

3*(VI t .  - 2 VI2-t- 1/'22) { [1[001]10] ½(Zll + Z,2) 
z33 

f [011-] ½(V22 + 2 Y23 + 1133) [TOOl t 
~( Z22 + Z33) 
zlt 

f [01 1] ¼(V22 -- 2 V23 -I- V33) '{ [1001 t 
½(Z22 + Z33) 
Zj~ 

Extinction 
factor y 

0.676 (6) 

0.644 (6) 

0"831 (8) 
0"655 (6) 

0"809 (7) 
0"626 (6) 

0"463 (6) 
0.854 (7) 

0"455 (6) 
0"793 (7~ 
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in Table 2. For {400}, y varies between 0.23 and 0.71 
as the crystal orientation is changed. The values of 
U=  1/g .2 are also given in Table 1. 

Some deductions may be made from the results in 
Table 1; the multiplying factor of 10 -s for U will be 
omitted below. From 400, 

and from 040 
Vu + 1/Z22- VI~ + 1/Z33 = 1.5 (12) 

V22 + 1/Zn = 4"4 (13) 

V22 -t- 1/Z33 = 0"098. (14) 
Therefore 

1/Z33 <0.098 (15) 
and 

/722 < 0"098. (16) 
Hence 

V n =  1.5, from (12), (17) 
and 

1/Zx1=4"4, from (13), (18a) 

with the smaller terms neglected. 
Similarly, 004 gives 

1/Z22 < 0'044 (19) 

and 
V3a < 0"044 (20) 

1 / Z n = 7 " 9 ,  (18b) 

somewhat different from (18a). 
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Fig. 3. Experimental and calculated variation of extinction 
factor y with azimuthal angle ~u for 004 reflexion. The 
crosses are experimental points. The squares are calculated 
values using (3) and (10). That is, U=V33+(Zn cos2 ~t 
q_Z22sin 2 ~ ) - t  with Va3=l/Z22=O'O22x 10 -s, 1/Zn=7"9 
× 10 -s. The circles are calculated values using (3) and (26). 
That is, U= Va3+RH cos z ~'+R~2sin2~ ' with V33=R2, 
=0.022x 10 -s, Rn=7.9x 10 -s. 

For the positions where the extinction is greatest, 
it is not possible to make this separation of U into con- 
tributions from type I and type II extinction. 

The corresponding restrictions on  the half lengths of 
the principal axes of the domains described by V are 

r1=0"58 (2)/zm 
r2 > 2.3 (1)/zm 
r3 > 3"4 (2) p m .  

If the principal variances of the angular distribution 
function represented by Z are a~, then 

o-1= 12-2 (5)", from (18a), 
o.1 = 16 (1)", from (18b), 
O'z < 1.22 (7)" 
o.a < 1"82 (7)" .  

The estimated errors include only the counting statis- 
tics of the original measurements. There will be addi- 
tional systematic effects from uncertainties, for exam- 
ple in the structure factor F(400) and the scale factor. 
However, the principal interest is in the anisotropies 
and their description. 

In an attempt to separate the contributions from 
type I and type II extinction in, for example, equation 
(14), calculations were made of the expected intensity 
at intermediate values of ~, corresponding to the results 
shown in Fig. 2. Different proportions of the two types 
of extinction were tried, but it was not possible to 
obtain qualitative agreement using parameters fitted to 
the maximum and minimum values. An example is 
shown in Fig. 3; the crosses are experimental points 
for 004, as in Fig. 2, and the squares are calculated 
values with 

V33 = 1/Z22=0"022 x 10 -s and 1/Zn=7"9 x 10 -s 

giving a fit to the experimental points at ~,=90 and 
~, = 180 °, and dividing the extinction at ~' = 90 ° equally 
between type I and type II extinction. The discrepancy 
is very marked, the observed intensity increasing with 

much more rapidly than the calculated values sug- 
gest. The degree of anisotropy is much greater than in 
the examples considered by Coppens & Hamilton 
(1970). 

(d) New model 
Thus the model of anisotropic extinction sum- 

marized in (3) and (8) has failed to describe the details 
of the observed intensity variation. It has been found 
that with a different description of the type I extinction, 
a much better fit to the results is obtained. In this sec- 
tion, the new expression is defined, and an account is 
given of the form of the extinction which it predicts. 

The requirement is a function to represent the prob- 
ability distribution for angular deviation from the 
mean orientation. This will replace (2), a Gaussian 
with variance o.2= 1/4ng2. A simple way of allowing g, 
and therefore o., to vary with direction, is to introduce 
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some second-rank tensor. The probability distribution 
for angular deviation about each principal axis of this 
tensor is assumed to be a Gaussian of the form (2). 
That is 

P(A1, A2, A3) -- 23/2glg2g3 
×exp -[2rc(gxAx2 2+g2A2+g2A2)]2 2 (21) 

for angular deviations A~, i=  1,2, 3, about the principal 
axes, a trivariate Gaussian with variances a~= 1/4rcg~. 

What is sought is a probability distribution P(A,D) 
for angular deviation A about some direction defined 
by a unit vector D. In the experiment D is, as before, 
perpendicular to the plane of diffraction. Let D have 
components d~, i=  1,2, 3, referred now to the principal 
axes of (21). The angles of misorientation are assumed 
to be sufficiently small for them to combine as vectors. 

Suppose that the crystal has been rotated by - A  
about D away from the mean Bragg position. Two 
ways of defining P(A,D) have been considered, by 
estimating the following: 

(1) The probability of a domain having such a mis- 
orientation that it is now exactly at the Bragg position. 
That is, the domain has misorientation A about D. 
This necessary rotation may be resolved into rotations 
d~A, i=  1,2, 3 about the principal axes. The probability 
of these three rotations is 

Pt(A,D) - 2 2 2 2 2 2 1/2 = l/2(g ldl + g 2d2 "k g 3d3) 
× exp -[2rc(gld~+g2d2+gad3)A2 2 2 2 2 2 2 ) ]  ( 2 2 )  

which is a Gaussian with variance cr2=(d~/a~+d2/a222 
+ dZ/cr~)-1. This is the expression (6) used by Coppens 
& Hamilton (1970), with D'ZD 2 2 2 2 2 2 = (g ldl + g 2d2 + g 3d3), 
and the eigenvalues of Z given by (l=g~. 

(2) The probability of a domain having a mis- 
orientation about any direction, of such a magnitude 
that it has a component A about D. This may be ob- 
tained by projecting (21) onto the direction D. The 
resulting expression is (Nelmes, 1969)* 

P2(A,D)= ]/2(d~/g~ + d~/gZ2 + d~/g~) -1/2 
x exp [2rcAZ/(d~/g~ 2 2 2 2 -- +dz/g2+d3/g3)], (23) 

a Gaussian with variance a2= 2 2 2 2 (d~cr~ + d2~r2 + d2cr2). 
This distribution may be represented by a tensor R, 
where D'RD = (d2/g 2 + d2/g 22 + d]/g2). The eigenvalues 
of R are Q~= 1/gZ~= 1/(~. 
If g(D) is defined by 

g(D) = (D'RD) -1/2 , (24) 

(23) may be written more concisely as 

Pz(A,D)= l/2g(D) exp -(2rcA2/D'RD). (25) 

* There is an error in the normalization factor in the ap- 
propriate equation (9) of this paper" it should read [2rffu~n~ + 
//2//2 ~ / / 2 H 2 "  d - 1/2 

2 2"-t- 3 3/J 

This result (25) may be used as an alternative to 
(22) for the description of type I extinction. The 
formalism is as before, with 

U =  1/g .2 = N ' V N  + D ' R D  (26) 

replacing (10), and (24) replacing (7). The principal 
axes of the tensors Z and R coincide. The expressions 
(22) and (25) simplify to the same distribution when D 
lies along any one of the principal axes. However, the 
two expressions may give results different from one 
another if D is in a general direction. What is the 
physical significance of this difference? 

In the experimental situation, the scattered X-rays 
are detected as the crystal is rotated through the Bragg 
position. For normal-beam equatorial geometry, the 
rotation axis is perpendicular to the diffraction plane, 
i.e. parallel to D. It is assumed that the collimation of 
the incident beam is such that all domains pass through 
the Bragg position as the crystal is rotated. (This is 
generally true, since the effective angular spread of 
imperfect crystals is usually a few minutes or, as here, 
seconds of arc. Indeed, if this is not so, then the inte- 
grated intensity from the whole crystal is not being 
measured.) It follows that the distribution Pz(A,D), 
equation (25), is the appropriate one. P,(A,D), equa- 
tion (6) or (22), corresponds to perfect collimation of 
the incident beam, a too restrictive condition. Away 
from the principal axes, where they agree, PI(A,D) 
gives a narrower distribution than Pz(A,D), as is sug- 
gested by a comparison of the expressions for the 
variances of the distributions. Thus the extinction will 
be less and the intensity greater if P2(A,D) is used. 
This may be seen in Fig. 3, where the circles show the 
values calculated from (26), with 

V33=R22=0"022  × 10 -s and Rn=7"9 × 10 -s . 

The calculated intensity values increase with ~u much 
more rapidly than did the previous calculations 
(squares). They are much closer to the experimental 
values; the shape of the intensity variation with azi- 
muth is correct. 

The results for {440} reflexions are also in better 
agreement with the new model. The parameters ob- 
tained from the {400} reflexions were used to calculate 
expected values of y for the {440} reflexions. For most 
reflexions and orientations, the two models gave 
results which were similar to each other and in reason- 
able agreement with the experimental values. However, 
there were differences between the two models for 440, 

I 
measured with [110] and [001] vertical. For the old 
model, with tensors V and Z, the predicted values are 
similar to each other: y=0.703 and y=0.649 respec- 
tively. For the new model, the predicted values are 
y=0.838 and y=0.649, in good agreement with the 
experimental values of y=0.831 (8) and y=0.655 (6). 
This quantitative agreement is probably fortuitous, 
because of uncertainties in the experimental results 
and the simplicity of the model. However, the qualita- 
tive differences are certainly in favour of the new model. 
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To illustrate the differences between the two descrip- 
tions of type I extinction, calculations have been made 
of the expected form of the variation of intensity with 
azimuthal angle ~, for a hypothetical crystal. They 
have been made for a range of values of the dimension- 
less quantity ~T in equation (3); this is essentially the 
product of the kinematical integrated intensity per unit 
volume and the mean path length through the crystal. 
A degree of anisotropy was assumed which would give 
an extinction factor varying between y = 0.2 and y = 0.8 
for a strong reflexion with ~T=3.00 × 10 -4. (This was 
the appropriate value of ~T for the strongest reflexion 
from Cr-CI boracite with Mo K~ radiation and T equal 
to 0.1 mm). For type I extinction alone, the change in 
intensity corresponds to a varying between 0.73" and 
31". The extinction factor has been calculated as a 
function of ~' for the following values of ~T: 3.00, 0.50, 
0.10 and 0.01, all × 10 -4. The results are shown in 
Fig. 4. To represent type I extinction, the tensor Z 
was used for ~ increasing from 0 ° to 90 °, and the 
tensor R for ~, decreasing from 90 ° to 0 °. 

The differences between the two models are quite 
marked, even for the weaker reflexions. Firstly, as seen 
in Fig. 3, on moving away from a position where there 
is considerable extinction, the intensity rises with 

o . 8 ~  I 

0.6 

Y 

0.4-- 

0.2 ] - I 
v , z  I V,R 

i 

o I I I I I 
0 30 60 90 60 30 0 

in degrees 

Fig. 4. Calculated variation of extinction factor y with azi- 
muthal angle ~' for a hypothetical crystal. Calculations have 
been made using (3), with a,a': ~7'=3"00x10-4; b,b': 
~ T = 0 " 5 0 ×  10 -4 ;  C,C': ~7'=0.10x 10-4; d,d': ~T=0"01 
x l0 -4.At ~,=0 °, U=0"0156x10-8: at ~=90 °, U=28.4 
x 10 -s. To obtain the curves a,b,c,d, equation (10) was used 
for U (tensors V and Z). The different curves a correspond to 
different proportions of type I and type II extinction at ~ = 0 °. 
To obtain the curves a',b,'c',d', equation (26) was used for 
U (tensors V and R). 

much more rapidly when R is used. Secondly, the Z 
model is more sensitive to the relative proportions of 
type I and type II extinction. The three (a) curves cor- 
respond to different proportions, giving the same over- 
all effect at ~t=0. When R is used the same variation 
produces differences too small to show. Thirdly, the 
R model concentrates much of the intensity varia- 
tion with azimuth over a small range of ~,, especially 
for the weaker reflexions. Consider the curves (c) and 
(c') for ~T=0.10 × 10 -4, a fairly weak reflexion for the 
samples and radiations in common use. (If the struc- 
ture factor is 0.01 electrons A -3, for example F =  10 
electrons for a cell 10× 10× 10 A, then with Cu Kc~ 
radiation, with the Lorentz and polarization factors 
neglected, the value of ~ is about 0.04 m-1. If T =  0.2 
mm, then ~T=  0.08 × 10-4.) Over the range ~ '= 90 to 
~u = 10 °, the intensity decreases by 4 % ; over the range 
~u= 10 to ~,=0 °, it decreases by a further 20%. For 
the Z model, almost all the 24 % decrease occurs within 
the range ~ = 90 to ~u = 10 °. 

It has been suggested that the new model with the 
tensor R is correct, rather than that with the tensor Z. 
Therefore an intensity variation like (c') would be 
expected. For most diffractometer experiments, the 
value of azimuthal angle for each reflexion is a matter 
of chance, depending upon how the crystal is mounted 
on the goniometer and upon the diffraction geometry 
in use. Thus of a group of refiexions with approximately 
the same kinematic intensity, corresponding to (c') 
for example, a small fraction may be reduced in inten- 
sity appreciably more than the rest. An isotropic ex- 
tinction correction could not deal with this. 

(e) Primary extinction 
It has been assumed that there is only secondary, 

and no primary extinction. However, the estimated 
semi-axes of the perfect domains ri may be as large as 
several microns, hence the expected magnitude of 
primary extinction needs to be considered. The expres- 
sion given by Zachariasen (1967) for the extinction 
factor y in the presence of primary extinction may be 
written : 

y = { 1  +~[[gp+(T- [ )g*]}  -1/2 (27) 

where f is the mean path length through a perfect 
domain. For spherical domains of radius r, [ = ~ r  and 
gp = r/2. This expression simplifies to (3) if [is neglected; 
primary and secondary extinction are equivalent if g is 
very large, since then g* =gp. 

To extend (25) to allow for ellipsoidal domains, 
described by the tensor W, r in the expression for gp 
may be replaced by r (N)=(N 'WN)  -~/2, equation (5). 
Therefore 

g p = ( N ' V N )  -1/z , (28) 

if the definition (9) of V is used. This expression for 
gp may be compared with (26) for g*. The mean path 
length through a domain [, will also depend upon the 
orientation of the domain. For small Bragg angles, the 
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mean path length along the direction of the incident 
beam may be taken. If L is a unit vector parallel to the 
incident beam, then 

f = az[L'WL]- i/z (29) 

The vectors L, N, and D are mutually perpendicular. 
For the Cr-CI boracite crystal, f is expected to be no 

more than a few microns, and T is about 100 microns, 
hence primary extinction will be small relative to 
secondary unless g, is much greater than g*. From the 
expression (24) this will occur if g* is dominated by 
type I extinction. For {400} reflexions, the main posi- 
tions when this occurs are 004 and 040 with D along 
[100]. For 040, V22 < 0.098 x 10 -s, hence gp > 3.19 × 10 4. 

Taking L along [001] for simplicity, f=az(2/]/V33), 
where V33 <0.044 × 10 -s. Hence f> 5.1 /zm, and fgp > 
0.16 m. However, the experimental value in this posi- 
tion of [fgp+(T-f)g*] is 0.38 (2)m. Thus a consider- 
able error will be introduced into the estimate of g*= 
[V2z+RI~] -~/2, and thus into a~, if primary extinction 
is neglected. The other values of rt and as are not af- 
fected significantly, hence the above elements of V may 
be used for the estimate of primary extinction in this 
position. 

However, the qualitative conclusions on the anisot- 
ropy of the secondary extinction are not affected. 
Indeed, allowance for primary extinction in the 004 
and 040 reflexions when D is along [100] would in- 
crease the estimated values of a~, possibly removing the 
discrepancy between the two estimates, and thus 
indicate even greater anisotropy in type I extinction. 
It is curious that, because of the shape of the domains, 
primary extinction is greatest when the observed inten- 
sity is greatest. 

Discussion 
Extinction 

The usefulness of any extinction correction is de- 
pendent upon agreement with experimental results. 
The measurements on Cr-Cl boracite indicated the 
need for a formalism which would allow tile magnitude 
of type I and type II extinction to vary with direction. 
A new description of anisotropic type I extinction has 
been given, which is believed to correspond more cor- 
rectly to the experimental situation. With this change, 
the model of Coppens & Hamilton (1970) reproduced 
the broad features of the experimental results, although 
there were some discrepancies. These may have re- 
sulted from errors or inadequacies in the model, in 
addition to the neglect of primary extinction and double 
reflexion. 

Tests of the results (26) on other crystals would be of 
interest. Anisotropic extinction should be considered 
if there are difficulties with an isotropic extinction cor- 
rection - for example, if the extinction appears to be 
underestimated for a few reflexions. Coppens & Hamil- 
ton (1970) describe how to incorporate the refinement 
of the elements of the appropriate tensors into the 

least-squares refinement; or an investigation such as 
that described here may be made. This indicated that 
choosing a different orientation of the sample would 
reduce the effects of the anisotropy (Nelmes & Thorn- 
ley, 1974). 

The expressions for primary and secondary extinc- 
tion described by Becker & Coppens (1974a) differ in 
important respects from those of Zachariasen (1967). 
Results were given for isotropic extinction in imperfect 
spherical crystals. The expressions for primary and 
secondary extinction, which correspond to (3), include 
angle-dependent factors. Explicit angle dependence 
also occurs in the expression corresponding to (4); 
r is replaced by l sin 20, where l is the mean radius of a 
domain along the diffracted beam. In addition to the 
Gaussian distribution (2), a Lorentzian distribution 
was considered. 

There would be corresponding differences between 
the treatment of Coppens & Hamilton (1970), as 
modified above, and the extension of the results of 
Becker & Coppens (1974a) to anisotropic extinction. 
The vector N in (5) would be replaced by a vector 
parallel to the diffracted beam, and the factor sin 20 
introduced into (8) or (26), in addition to alternative 
forms for Gaussian and Lorentzian distributions. Use 
of this theory for analysis of the present results alters 
the interpretation of the type II extinction; the ellip- 
soidal domains have a semi-axis longer along the 
needle axis than perpendicular to it. However, it is 
not possible with the present results to distinguish be- 
tween Lorentzian and Gaussian distributions for an- 
gular misorientation of the domains, or indeed to 
choose between the two theories. The qualitative 
arguments on the effect of anisotropic extinction are 
unaffected. 

Boracites 
The parameters of the tensors V and R (or Z) indi- 

cate: 
(1) The principal axes of the tensors describing both 

type I and type II extinction coincide with the crystal 
axes. 

(2) That semi-axis of the assumed ellipsoidal perfect 
domains which is parallel to the needle axis (rl) is 
smaller than the semi-axes perpendicular to the needle 
axis. 

(3) There is much greater angular misorientation 
about the needle axis (al) than perpendicular to it. 

These relations between V and R, the crystal axes 
and the needle axis (presumably the growth direction) 
suggest that the observed scattering properties do 
reflect in some way the true arrangement of defects in 
the crystal. It would be of great interest to investigate 
the defect structure to see if the crystal does appear 
more perfect for directions perpendicular to the growth 
direction than parallel to it. In a boracite the defects 
are probably mostly grown-in, rather than a result of 
the subsequent history of the crystal. 

The model used is a convenient way of describing 
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the average effect of these defects over the whole 
crystal. There will be perfect regions within the crystal, 
but defects such as dislocations and stacking faults do 
not normally dissect a crystal into discrete misoriented 
domains. The term 'ellipsoidal perfect domains' has 
been used above for convenience, but it should not be 
imagined that the authors believe in such objects per se. 
The expression (5) is a simple way of allowing the aver- 
age perfect dimension along N to vary with crystal 
orientation. 

It is not known whether the sample of Cr-CI bora- 
cite is exceptional in its defect structure for boracites, 
or for crystals grown by vapour transport. The form 
of a needle is, however, very unusual (Schmid, 1973). 
It is intended to continue with measurements of the 
kind described here, on boracites and other materials, 
in combination if possible with study of the defects by 
X-ray topography. 
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Structure Factor Algebra in the Probabilistic Procedures for Phase Determination. III 
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An investigation has been carried out on the use of normalized, quasi-normalized and pseudo-nor- 
malized structure factors in the probabilistic procedures for phase assignment. A new statistical for- 
mula has been established for centrosymmetric space groups. 

Introduction 

Several ways of normalizing structure factors are used 
in the procedures for the solution of the phase problem 
by direct methods. In part I of this paper (Giacovazzo, 
1974a) we have recalled the definitions of the nor- 
malized structure factor Eh, the quasi-normalized struc- 
ture factor ~h and a pseudo-normalized structure factor 
E~, this last advised by Karle & Karle (1966). Eh ensures 
always that the mean-square (E 2) = 1 with the conse- 
quent simplicity in some distribution functions: the 
quasi-normalized structure factor ~h warrants greater 
simplicity in the derivation of the algebraic relations. 

In the automatic procedures for the calculation of 
crystal structure invariants (Hauptman, Fisher, Han- 
cock & Norton, 1969), quasi-normalized structure 
factors are preferred: in actual symbolic-addition 
procedures or in the multisolution approach the use of 
E or E '  is a personal decision. Giacovazzo (1974a, b) 

has shown that the statistical interactions among 
Eh, Ek, Eh+k are not simple, but depend on the space 
groups and on the parity of the vectors h, k, h _+ k. 

In fact, in centrosymmetric crystals the formula is 

] P+(Eh)=½+½ tanh ~i72 Wh, kEkEh+_k , (1) 

where 
1 (~(h)~(k)~(h _ k) )  . 

~/'h k ~ - -  

m is the order of the space group, ~ its trigonometric 
structure factor. If Eh is a non-centrosymmetric reflex- 
ion, we can write 

P(~oh)=exp (Gh, k COS (~h--~k--(Ph_k))/[27~lo(Gh, k)], (2) 

where 
1 ( ~ ( - h ) ~ ( k ) ~ ( h - k ) )  2 

Gh k :  ' m v'PhPkPh- k ]/N [EhEkEn-k]. 


